Uncountable collections of pairwise disjoint non-chainable tree-like continua in the plane

L. C. Hoehn (Ihoehn@uab.edu)

University of Alabama at Birmingham

March 19, 2011 STDC11

L. C. Hoehn (Ihoehn@uab.edu) (UAB) Unco

March 19, 2011 STDC11 1 / 7

 $Continuum \equiv compact \ connected \ metric \ space$

Continuum \equiv compact connected metric space

Definition

Let X be a continuum.

3 ×

 $Continuum \equiv compact \ connected \ metric \ space$

Definition

Let X be a continuum.

 X is *tree-like* if for every ε > 0 there is a tree T and a map f : X → T whose fibres have diameters < ε

 $Continuum \equiv compact \ connected \ metric \ space$

Definition

Let X be a continuum.

- X is tree-like if for every ε > 0 there is a tree T and a map f : X → T whose fibres have diameters < ε
- X is arc-like, or chainable, if for every ε > 0 there is an arc A and a map f : X → A whose fibres have diameters < ε

2 / 7

 $Continuum \equiv compact \ connected \ metric \ space$

Definition

Let X be a continuum.

- X is tree-like if for every ε > 0 there is a tree T and a map f : X → T whose fibres have diameters < ε
- X is arc-like, or chainable, if for every ε > 0 there is an arc A and a map f : X → A whose fibres have diameters < ε
- X is a *triod* if there is a subcontinuum Z ⊂ X such that X \ Z is the union of three disjoint non-empty open sets.

 $Continuum \equiv compact \ connected \ metric \ space$

Definition

Let X be a continuum.

- X is tree-like if for every ε > 0 there is a tree T and a map f : X → T whose fibres have diameters < ε
- X is arc-like, or chainable, if for every ε > 0 there is an arc A and a map f : X → A whose fibres have diameters < ε
- X is a *triod* if there is a subcontinuum Z ⊂ X such that X \ Z is the union of three disjoint non-empty open sets.

Theorem (R. L. Moore, 1928)

The plane \mathbb{R}^2 does not contain an uncountable collection of pairwise disjoint triods.

A B F A B F

A D > A A P >

Homogeneous plane continua

Definition

A space *M* is *homogeneous* if for every $x, y \in M$ there is a homeomorphism $h: M \to M$ such that h(x) = y.

Homogeneous plane continua

Definition

A space M is *homogeneous* if for every $x, y \in M$ there is a homeomorphism $h: M \to M$ such that h(x) = y.

The known homogeneous (non-degenerate) continua in the plane \mathbb{R}^2 are: the circle (\mathbb{S}^1), pseudo-arc, and circle of pseudo-arcs.

Homogeneous plane continua

Definition

A space *M* is *homogeneous* if for every $x, y \in M$ there is a homeomorphism $h: M \to M$ such that h(x) = y.

The known homogeneous (non-degenerate) continua in the plane \mathbb{R}^2 are: the circle (\mathbb{S}^1), pseudo-arc, and circle of pseudo-arcs.

If this is not all of them, then by (Jones, 1955) and (Hagopian, 1976), there must be another one which is hereditarily indecomposable and tree-like.

Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

• Triods are decomposable, so M is not a triod

Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod
- Suppose $T \subsetneq M$ is a triod

Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod
- Suppose $T \subsetneq M$ is a triod
- Since *M* is indecomposable, it has uncountably many composants, which are pairwise disjoint; *T* is contained in one of them

4 1 1 4 1 1 1

Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod
- Suppose $T \subsetneq M$ is a triod
- Since *M* is indecomposable, it has uncountably many composants, which are pairwise disjoint; *T* is contained in one of them
- By homogeneity, each composant of M contains a copy of T

A B F A B F

Lemma (Hagopian, 1975)

Let M be an indecomposable homogeneous continuum in the plane. Then M does not contain a triod.

Proof.

- Triods are decomposable, so M is not a triod
- Suppose $T \subsetneq M$ is a triod
- Since *M* is indecomposable, it has uncountably many composants, which are pairwise disjoint; *T* is contained in one of them
- By homogeneity, each composant of M contains a copy of T
- This contradicts Moore's theorem

A B A A B A

Theorem (Oversteegen & Tymchatyn, 1984)

Let M be an indecomposable homogeneous continuum in the plane. If every proper subcontinuum of M is chainable, then M is the pseudo-arc.

5 / 7

Theorem (Oversteegen & Tymchatyn, 1984)

Let M be an indecomposable homogeneous continuum in the plane. If every proper subcontinuum of M is chainable, then M is the pseudo-arc.

Example (Ingram, 1974)

There exists an uncountable family of pairwise disjoint non-chainable tree-like continua in the plane.

Theorem (Oversteegen & Tymchatyn, 1984)

Let M be an indecomposable homogeneous continuum in the plane. If every proper subcontinuum of M is chainable, then M is the pseudo-arc.

Example (Ingram, 1974)

There exists an uncountable family of pairwise disjoint non-chainable tree-like continua in the plane.

Theorem (Oversteegen & Tymchatyn, 1984)

Let M be an indecomposable homogeneous continuum in the plane. If every proper subcontinuum of M is chainable, then M is the pseudo-arc.

Example (Ingram, 1974)

There exists an uncountable family of pairwise disjoint non-chainable tree-like continua in the plane.

Question

Is there a non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Question

Is there a non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Example (H, 2011)

Let X be the non-chainable continuum with span zero from (H, 2011). Then $X \times C$ is embeddable in the plane, where C is the middle-thirds Cantor set.

Moreover, if $p, q \in C$ with $|p - q| < \varepsilon$, then there is a ε -homeomorphism of the plane to itself taking $X \times \{p\}$ to $X \times \{q\}$.

- 4 同 6 4 日 6 4 日 6

Question

Is there a non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Example (H, 2011)

Let X be the non-chainable continuum with span zero from (H, 2011). Then $X \times C$ is embeddable in the plane, where C is the middle-thirds Cantor set.

Moreover, if $p, q \in C$ with $|p - q| < \varepsilon$, then there is a ε -homeomorphism of the plane to itself taking $X \times \{p\}$ to $X \times \{q\}$.

A B A A B A

Question

Is there a non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Example (H, 2011)

Let X be the non-chainable continuum with span zero from (H, 2011). Then $X \times C$ is embeddable in the plane, where C is the middle-thirds Cantor set.

Moreover, if $p, q \in C$ with $|p - q| < \varepsilon$, then there is a ε -homeomorphism of the plane to itself taking $X \times \{p\}$ to $X \times \{q\}$.

Open questions

Questions

Is there a *hereditarily indecomposable* non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?

Open questions

Questions

- Is there a *hereditarily indecomposable* non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?
- If X is a tree-like continuum and X × C embeds in the plane, must X have span zero?

Open questions

Questions

- Is there a *hereditarily indecomposable* non-chainable tree-like continuum X such that the plane contains an uncountable collection of pairwise disjoint copies of X?
- If X is a tree-like continuum and X × C embeds in the plane, must X have span zero?
- Is there a hereditarily indecomposable non-chainable continuum with span zero?