Span Zero and Surjective Span Zero L. C. Hoehn (logan.hoehn@utoronto.ca) University of Toronto March 7, 2009 STDC09 # Span Let X be a continuum with metric d. # Span Let X be a continuum with metric d. #### Definition (Lelek, 1964) The span of X is the supremum of the numbers $$\inf\{d(x,y):(x,y)\in Z\}$$ where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$. (here $$\pi_1(x, y) = x$$ and $\pi_2(x, y) = y$.) ### Span example: Unit Circle Consider the unit circle \mathbb{S}^1 in \mathbb{R}^2 with the Euclidean metric: # Span example: Unit Circle Consider the unit circle \mathbb{S}^1 in \mathbb{R}^2 with the Euclidean metric: # Span example: Unit Circle Consider the unit circle \mathbb{S}^1 in \mathbb{R}^2 with the Euclidean metric: Define Z as shown. This witnesses that the span of \mathbb{S}^1 is ≥ 2 . # Span and Surjective Span ### Definition (Lelek, 1964) The span of X is the supremum of the numbers $$\inf\{d(x,y):(x,y)\in Z\}$$ where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$. # Span and Surjective Span #### Definition (Lelek, 1964) The span of X is the supremum of the numbers $$\inf\{d(x,y):(x,y)\in Z\}$$ where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$. #### Definition (Lelek, 1977) The *surjective span* of X is the supremum of the numbers $$\inf\{d(x,y):(x,y)\in Z\}$$ where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z) = X$. The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with the Euclidean metric: The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with the Euclidean metric: The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with the Euclidean metric: This set Z_1 witnesses that the span of N is ≥ 2 . The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with the Euclidean metric: This set Z_2 witnesses that the surjective span of N is ≥ 1 . The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with the Euclidean metric: This set W shows that the surjective span of N is ≤ 1 . # Span vs. Surjective Span ### Question (Lelek, 1977) Is it true that $\operatorname{Span}(X) \leq 2 \cdot \operatorname{SurjectiveSpan}(X)$ for every metric continuum X? # Span vs. Surjective Span ### Question (Lelek, 1977) Is it true that $\operatorname{Span}(X) \leq 2 \cdot \operatorname{SurjectiveSpan}(X)$ for every metric continuum X? **Answer:** No. There is a metric on the noose space (shown on the next slide) so that the span is 1 and the surjective span is $\frac{1}{4}$. The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with a different metric d: The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with a different metric d: The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with a different metric d: This set Z witnesses that the span of (N, d) is ≥ 1 . The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with a different metric d: This set W shows that the surjective span of (N, d) is $\leq \frac{1}{4}$. The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with a different metric d: This set W shows that the surjective span of (N, d) is $\leq \frac{1}{4}$. # Span vs. Surjective Span #### Question Is there some $k \ge 4$ such that $\operatorname{Span}(X) \le k \cdot \operatorname{SurjectiveSpan}(X)$ for every metric continuum X? # Span vs. Surjective Span #### Question Is there some $k \ge 4$ such that $\operatorname{Span}(X) \le k \cdot \operatorname{SurjectiveSpan}(X)$ for every metric continuum X? An affirmative answer to the above question would yield an affirmative answer to: #### Question Does a metric continuum have span zero if and only if it has surjective span zero? #### Definition (Lelek, 1964) The span of X is the supremum of the numbers $$\inf\{d(x,y):(x,y)\in Z\}$$ where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$. #### Definition (Lelek, 1964) The span of X is the supremum of the numbers $$\inf\{d(x,y):(x,y)\in Z\}$$ where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$. #### Fact A metric continuum X has span zero iff $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z)$. (here ΔX denotes the diagonal $\{(x,x): x \in X\}$.) #### Definition (Lelek, 1964) The span of X is the supremum of the numbers $$\inf\{d(x,y):(x,y)\in Z\}$$ where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$. #### **Fact** A metric continuum X has span zero iff $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z)$. (here ΔX denotes the diagonal $\{(x,x):x\in X\}$.) #### Definition A continuum X has *span zero* if $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z)$. (here ΔX denotes the diagonal $\{(x,x):x\in X\}$.) #### Definition A continuum X has *span zero* if $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z)$. (here ΔX denotes the diagonal $\{(x,x):x\in X\}$.) #### Definition A continuum X has *surjective span zero* if $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z) = X$. # Span Zero and Chainability ### Question (Lelek, 1971) Does a metric continuum have span zero if and only if it is chainable? # Span Zero and Chainability ### Question (Lelek, 1971) Does a metric continuum have span zero if and only if it is chainable? There is a non-metric version of the definition of chainable: #### Definition A continuum X is *chainable* if every open cover for X has a chain refinement. (a chain cover is a finite cover $\{U_1,\ldots,U_n\}$ such that $U_i\cap U_j\neq\emptyset$ iff $|i-j|\leq 1$.) # Span Zero and Chainability #### Question (Lelek, 1971) Does a metric continuum have span zero if and only if it is chainable? There is a non-metric version of the definition of chainable: #### Definition A continuum X is *chainable* if every open cover for X has a chain refinement. (a chain cover is a finite cover $\{U_1,\ldots,U_n\}$ such that $U_i\cap U_j\neq\emptyset$ iff $|i-j|\leq 1$.) #### **Fact** Any chainable continuum has span zero. Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that: - L is a base for the closed sets of \hat{X} , - K is a base for the closed sets of \hat{X}^2 , and - given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} . Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that: - L is a base for the closed sets of \hat{X} , - K is a base for the closed sets of \hat{X}^2 , and - given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} . Using this third property, he showed: Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that: - L is a base for the closed sets of \hat{X} , - K is a base for the closed sets of \hat{X}^2 , and - given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} . Using this third property, he showed: X not chainable \Rightarrow \hat{X} not chainable Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that: - L is a base for the closed sets of \hat{X} , - K is a base for the closed sets of \hat{X}^2 , and - given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} . Using this third property, he showed: X not chainable $\Rightarrow \hat{X}$ not chainable X has span non-zero \Rightarrow \hat{X} has span non-zero Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that: - L is a base for the closed sets of \hat{X} , - K is a base for the closed sets of \hat{X}^2 , and - given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} . Using this third property, he showed: X not chainable $\Rightarrow \hat{X}$ not chainable X has span non-zero \Rightarrow \hat{X} has span non-zero It is also possible to show: X has surjective span zero \Rightarrow \hat{X} has surjective span zero Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that: - L is a base for the closed sets of \hat{X} , - K is a base for the closed sets of \hat{X}^2 , and - given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} . Using this third property, he showed: X not chainable \Rightarrow \hat{X} not chainable X has span non-zero \Rightarrow \hat{X} has span non-zero It is also possible to show: **X** has surjective span zero \Rightarrow $\hat{\mathbf{X}}$ has surjective span zero With extra machinery from model theory, Hart, van der Steeg, Bartošová (2008) show additionally that: X has span zero \Rightarrow \hat{X} has span zero ### Non-Metric Examples? **Upshot:** We may as well look for non-metric continua which have span zero but are not chainable, or which have surjective span zero but not span zero. ### Non-Metric Examples? **Upshot:** We may as well look for non-metric continua which have span zero but are not chainable, or which have surjective span zero but not span zero. Suggestions? ## Non-Metric Examples? **Upshot:** We may as well look for non-metric continua which have span zero but are not chainable, or which have surjective span zero but not span zero. Suggestions? Thank you!