Span Zero and Surjective Span Zero

L. C. Hoehn (logan.hoehn@utoronto.ca)

University of Toronto

March 7, 2009 STDC09

Span

Let X be a continuum with metric d.

Span

Let X be a continuum with metric d.

Definition (Lelek, 1964)

The span of X is the supremum of the numbers

$$\inf\{d(x,y):(x,y)\in Z\}$$

where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$.

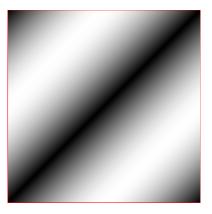
(here
$$\pi_1(x, y) = x$$
 and $\pi_2(x, y) = y$.)

Span example: Unit Circle

Consider the unit circle \mathbb{S}^1 in \mathbb{R}^2 with the Euclidean metric:

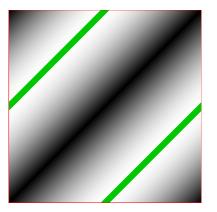
Span example: Unit Circle

Consider the unit circle \mathbb{S}^1 in \mathbb{R}^2 with the Euclidean metric:



Span example: Unit Circle

Consider the unit circle \mathbb{S}^1 in \mathbb{R}^2 with the Euclidean metric:



Define Z as shown. This witnesses that the span of \mathbb{S}^1 is ≥ 2 .

Span and Surjective Span

Definition (Lelek, 1964)

The span of X is the supremum of the numbers

$$\inf\{d(x,y):(x,y)\in Z\}$$

where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$.

Span and Surjective Span

Definition (Lelek, 1964)

The span of X is the supremum of the numbers

$$\inf\{d(x,y):(x,y)\in Z\}$$

where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$.

Definition (Lelek, 1977)

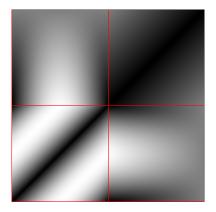
The *surjective span* of X is the supremum of the numbers

$$\inf\{d(x,y):(x,y)\in Z\}$$

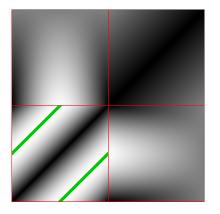
where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z) = X$.

The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with the Euclidean metric:

The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with the Euclidean metric:

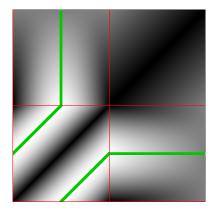


The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with the Euclidean metric:



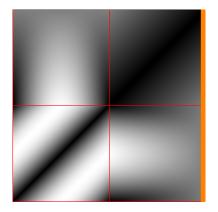
This set Z_1 witnesses that the span of N is ≥ 2 .

The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with the Euclidean metric:



This set Z_2 witnesses that the surjective span of N is ≥ 1 .

The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with the Euclidean metric:



This set W shows that the surjective span of N is ≤ 1 .

Span vs. Surjective Span

Question (Lelek, 1977)

Is it true that $\operatorname{Span}(X) \leq 2 \cdot \operatorname{SurjectiveSpan}(X)$ for every metric continuum X?

Span vs. Surjective Span

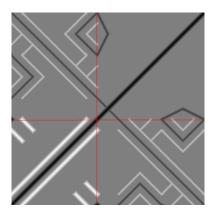
Question (Lelek, 1977)

Is it true that $\operatorname{Span}(X) \leq 2 \cdot \operatorname{SurjectiveSpan}(X)$ for every metric continuum X?

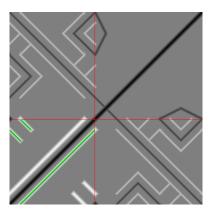
Answer: No. There is a metric on the noose space (shown on the next slide) so that the span is 1 and the surjective span is $\frac{1}{4}$.

The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with a different metric d:

The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with a different metric d:

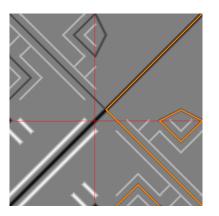


The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with a different metric d:



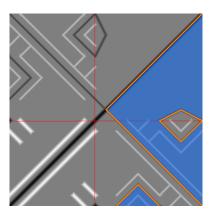
This set Z witnesses that the span of (N, d) is ≥ 1 .

The noose space $N = \mathbb{S}^1 \cup [0,1]$ in \mathbb{R}^2 with a different metric d:



This set W shows that the surjective span of (N, d) is $\leq \frac{1}{4}$.

The noose space $N=\mathbb{S}^1\cup[0,1]$ in \mathbb{R}^2 with a different metric d:



This set W shows that the surjective span of (N, d) is $\leq \frac{1}{4}$.

Span vs. Surjective Span

Question

Is there some $k \ge 4$ such that $\operatorname{Span}(X) \le k \cdot \operatorname{SurjectiveSpan}(X)$ for every metric continuum X?

Span vs. Surjective Span

Question

Is there some $k \ge 4$ such that $\operatorname{Span}(X) \le k \cdot \operatorname{SurjectiveSpan}(X)$ for every metric continuum X?

An affirmative answer to the above question would yield an affirmative answer to:

Question

Does a metric continuum have span zero if and only if it has surjective span zero?

Definition (Lelek, 1964)

The span of X is the supremum of the numbers

$$\inf\{d(x,y):(x,y)\in Z\}$$

where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$.

Definition (Lelek, 1964)

The span of X is the supremum of the numbers

$$\inf\{d(x,y):(x,y)\in Z\}$$

where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$.

Fact

A metric continuum X has span zero iff $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z)$.

(here ΔX denotes the diagonal $\{(x,x): x \in X\}$.)

Definition (Lelek, 1964)

The span of X is the supremum of the numbers

$$\inf\{d(x,y):(x,y)\in Z\}$$

where Z ranges over all subcontinua of X^2 with $\pi_1(Z) = \pi_2(Z)$.

Fact

A metric continuum X has span zero iff $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z)$.

(here ΔX denotes the diagonal $\{(x,x):x\in X\}$.)

Definition

A continuum X has *span zero* if $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z)$.

(here ΔX denotes the diagonal $\{(x,x):x\in X\}$.)

Definition

A continuum X has *span zero* if $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z)$.

(here ΔX denotes the diagonal $\{(x,x):x\in X\}$.)

Definition

A continuum X has *surjective span zero* if $Z \cap \Delta X \neq \emptyset$ for every subcontinuum Z of X^2 with $\pi_1(Z) = \pi_2(Z) = X$.

Span Zero and Chainability

Question (Lelek, 1971)

Does a metric continuum have span zero if and only if it is chainable?

Span Zero and Chainability

Question (Lelek, 1971)

Does a metric continuum have span zero if and only if it is chainable?

There is a non-metric version of the definition of chainable:

Definition

A continuum X is *chainable* if every open cover for X has a chain refinement.

(a chain cover is a finite cover $\{U_1,\ldots,U_n\}$ such that $U_i\cap U_j\neq\emptyset$ iff $|i-j|\leq 1$.)

Span Zero and Chainability

Question (Lelek, 1971)

Does a metric continuum have span zero if and only if it is chainable?

There is a non-metric version of the definition of chainable:

Definition

A continuum X is *chainable* if every open cover for X has a chain refinement.

(a chain cover is a finite cover $\{U_1,\ldots,U_n\}$ such that $U_i\cap U_j\neq\emptyset$ iff $|i-j|\leq 1$.)

Fact

Any chainable continuum has span zero.

Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that:

- L is a base for the closed sets of \hat{X} ,
- K is a base for the closed sets of \hat{X}^2 , and
- given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} .

Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that:

- L is a base for the closed sets of \hat{X} ,
- K is a base for the closed sets of \hat{X}^2 , and
- given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} .

Using this third property, he showed:

Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that:

- L is a base for the closed sets of \hat{X} ,
- K is a base for the closed sets of \hat{X}^2 , and
- given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} .

Using this third property, he showed:

X not chainable \Rightarrow \hat{X} not chainable

Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that:

- L is a base for the closed sets of \hat{X} ,
- K is a base for the closed sets of \hat{X}^2 , and
- given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} .

Using this third property, he showed:

X not chainable $\Rightarrow \hat{X}$ not chainable

X has span non-zero \Rightarrow \hat{X} has span non-zero

Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that:

- L is a base for the closed sets of \hat{X} ,
- K is a base for the closed sets of \hat{X}^2 , and
- given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} .

Using this third property, he showed:

X not chainable $\Rightarrow \hat{X}$ not chainable

X has span non-zero \Rightarrow \hat{X} has span non-zero

It is also possible to show:

X has surjective span zero \Rightarrow \hat{X} has surjective span zero

Van der Steeg (2003) describes a method for obtaining from a (non-metric) continuum X a metric continuum \hat{X} and countable lattices L and K such that:

- L is a base for the closed sets of \hat{X} ,
- K is a base for the closed sets of \hat{X}^2 , and
- given any first order formula Φ in the language of set theory, Φ holds for L and K if and only if Φ holds for 2^X and 2^{X^2} .

Using this third property, he showed:

X not chainable \Rightarrow \hat{X} not chainable

X has span non-zero \Rightarrow \hat{X} has span non-zero

It is also possible to show:

X has surjective span zero \Rightarrow $\hat{\mathbf{X}}$ has surjective span zero With extra machinery from model theory, Hart, van der Steeg, Bartošová (2008) show additionally that:

X has span zero \Rightarrow \hat{X} has span zero

Non-Metric Examples?

Upshot: We may as well look for non-metric continua which have span zero but are not chainable, or which have surjective span zero but not span zero.

Non-Metric Examples?

Upshot: We may as well look for non-metric continua which have span zero but are not chainable, or which have surjective span zero but not span zero.

Suggestions?

Non-Metric Examples?

Upshot: We may as well look for non-metric continua which have span zero but are not chainable, or which have surjective span zero but not span zero.

Suggestions?

Thank you!