Hereditarily equivalent continua in the plane

L. C. Hoehn (loganh@nipissingu.ca)

Nipissing University

March 15, 2019 Spring Topology and Dynamics Conference University of Alabama at Birmingham

 $Continuum \equiv compact connected metric space$

Continuum \equiv compact connected metric space

Question (Mazurkiewicz 1921)

Is the arc the only continuum which is homeomorphic to each of its non-degenerate subcontinua?

Continuum \equiv compact connected metric space

Question (Mazurkiewicz 1921)

Is the arc the only continuum which is homeomorphic to each of its non-degenerate subcontinua?

• X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua.

Continuum \equiv compact connected metric space

Question (Mazurkiewicz 1921)

Is the arc the only continuum which is homeomorphic to each of its non-degenerate subcontinua?

• X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua.

Moise 1948: No. The *pseudo-arc* is also hereditarily equivalent.

Continuum \equiv compact connected metric space

Question (Mazurkiewicz 1921)

Is the arc the only continuum which is homeomorphic to each of its non-degenerate subcontinua?

• X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua.

Moise 1948: No. The *pseudo-arc* is also hereditarily equivalent.

Henderson 1960: The arc is the only decomposable hereditarily equivalent continuum.

Continuum \equiv compact connected metric space

Question (Mazurkiewicz 1921)

Is the arc the only continuum which is homeomorphic to each of its non-degenerate subcontinua?

• X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua.

Moise 1948: No. The *pseudo-arc* is also hereditarily equivalent.

Henderson 1960: The arc is the only decomposable hereditarily equivalent continuum.

Cook 1970: Every hereditarily equivalent continuum is tree-like.

 $Continuum \equiv$ compact connected metric space

Question (Mazurkiewicz 1921)

Is the arc the only continuum which is homeomorphic to each of its non-degenerate subcontinua?

• X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua.

Moise 1948: No. The *pseudo-arc* is also hereditarily equivalent.

Henderson 1960: The arc is the only decomposable hereditarily equivalent continuum.

Cook 1970: Every hereditarily equivalent continuum is tree-like.

Theorem (Oversteegen-H 2019)

The arc and pseudo-arc are the only hereditarily equivalent continua in \mathbb{R}^2 .

Let $\varepsilon > 0$.

Let $\varepsilon > 0$.

Definition (Oversteegen-Tymchatyn 1982)

Let $f, g: [0,1] \to \mathbb{R}^2$ be piecewise linear such that $f([0,1]) \cap g([0,1]) = \emptyset$ and $\|f(t) - g(t)\| < \varepsilon \quad \forall t.$

Let $\varepsilon > 0$.

Definition (Oversteegen-Tymchatyn 1982) Let $f, g : [0, 1] \rightarrow \mathbb{R}^2$ be piecewise linear such that $f([0, 1]) \cap g([0, 1]) = \emptyset$ and $||f(t) - g(t)|| < \varepsilon \quad \forall t$. The union of all odd (winding number) complementary domains of

$$f \cup g \cup \overline{f(0)g(0)} \cup \overline{f(1)g(1)}.$$

is the ε -strip determined by f, g.

Let $\varepsilon > 0$.

Definition (Oversteegen-Tymchatyn 1982)

Let $f, g: [0,1] \to \mathbb{R}^2$ be piecewise linear such that $f([0,1]) \cap g([0,1]) = \emptyset$ and $||f(t) - g(t)|| < \varepsilon \quad \forall t$. The union of all odd (winding number) complementary domains of $f \cup g \cup \overline{f(0)g(0)} \cup \overline{f(1)g(1)}$.

is the ε -strip determined by f, g.

Theorem (Oversteegen-Tymchatyn 1984)

Theorem (Oversteegen-Tymchatyn 1984)

Theorem (Oversteegen-Tymchatyn 1984)

Theorem (Oversteegen-Tymchatyn 1984)

Theorem (Oversteegen-Tymchatyn 1984)

Lemma

Lemma

Lemma

Let $G \subset \mathbb{R}^2$ be a graph contained in the ε -strip determined by f, g. Then $\{(x, t) \in G \times [0, 1] : x \in \overline{f(t)g(t)}\}$ separates $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0, 1]$.

Theorem (Oversteegen-H 2016/2019)

A continuum X is hereditarily indecomposable if and only if $\forall map \ f : X \to G$ to a graph G $\forall open \ U \subset G \times (0,1)$ which separates $G \times \{0\}$ from $G \times \{1\}$ in $G \times [0,1]$ $\exists h : X \to U$ with $f = \pi_1 \circ h$.

Problems

Question

Are the arc and the pseudo-arc the only hereditarily equivalent continua?

• Any other example would have to be hereditarily indecomposable and tree-like.

Problems

Question

Are the arc and the pseudo-arc the only hereditarily equivalent continua?

• Any other example would have to be hereditarily indecomposable and tree-like.

Question

If X is a hereditarily equivalent continuum, must X be weakly chainable?

Problems

Question

Are the arc and the pseudo-arc the only hereditarily equivalent continua?

• Any other example would have to be hereditarily indecomposable and tree-like.

Question

If X is a hereditarily equivalent continuum, must X be weakly chainable?

Thank you!